

Power Quality Analyser

 UMG 509-PRO

 UMG 509-PRO}

Data sheet

DEVICE VIEWS

Front view

Rear view

Side view

All dimensions in mm

Bottom view

Cut-out size:
$138^{+0,8} \mathrm{~mm}\left(5.43^{+0,03} \mathrm{in}\right) \times 138^{+0,8} \mathrm{~mm}\left(5.43^{+0,03} \mathrm{in}\right)$

TECHNICAL DATA

General	
Net weight (with attached connectors)	approx. $1080 \mathrm{~g} \mathrm{(2.38} \mathrm{lb)}$
Device dimensions	approx. I $=144 \mathrm{~mm}(5.64 \mathrm{in}), \mathrm{w}=144 \mathrm{~mm}$ (5.64 in), $\mathrm{h}=75 \mathrm{~mm}(2.95 \mathrm{in})$
Battery	type Li-Mn CR2450, 3V (approval i.a.w. UL 1642)
Clock - in temperature range $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$	+-5 ppm (corresponding to approx. 3 minutes per year)

Transport and storage The following information applies to devices which are transported or stored in the original packaging.	
Free fall	$1 \mathrm{~m}(39.37 \mathrm{in})$
Temperature	$-25^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right)$ to $+70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$

Ambient conditions during operation	
The device is intended for weather-protected, stationary use. The device must be connected to the ground wire connection! Protection class I in acc. with IEC 60536 (VDE 0106, Part 1$).$	
Working temperature range	$-10^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right)$ to $+55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$
Relative humidity	5 to $95 \% \mathrm{RH}$ at $25^{\circ} \mathrm{C}\left(77{ }^{\circ} \mathrm{F}\right)$ without condensation
Operating altitude	0 to $2000 \mathrm{~m}(1.24$ mi) above sea level
Pollution degree	2
Installation position	upright
Ventilation	forced ventilation is not required.
Protection against ingress of solid foreign bodies and water - Front - Rear side	IP40 in acc. with EN60529 IP20 in acc. with EN60529

Supply voltage	
Installations of overvoltage category	300 V CAT III
Protection of the supply voltage (fuse)	6 A, type B (approved i.a.w. UL/IEC)
230V option:	95 V to $240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) / \mathrm{DC} 80 \mathrm{~V}$ to 300 V
- Nominal range	$+-10 \%$ of nominal range
- Operating range	max. $7 \mathrm{~W} / 14 \mathrm{VA}$
- Power consumption	48 V to $110 \mathrm{~V}(50 / 60 \mathrm{~Hz})$ or DC 24 to 150 V
24V option:	$+-10 \%$ of nominal range
- Nominal range	max. $9 \mathrm{~W} / 13 \mathrm{VA}$
- Operating range	
- Power consumption	

Terminal connection capacity (supply voltage)	
Connectable conductors. Only one conductor can be connected per terminal!	
Single core, multi-core, fine-stranded	$0.2-2.5 \mathrm{~mm}^{2}$, AWG $24-12$
Terminal pins, core end sheath	$0.25-2.5 \mathrm{~mm}^{2}$
Tightening torque	$0.5-0.6 \mathrm{Nm}$
Stripping length	$7 \mathrm{~mm}(0.2756 \mathrm{in})$

Current measurement	
Rated current	5 A
Resolution	0.1 mA
Metering range	0.005 to 7 Amps
Measurement range exceeded (overload)	as of 7.5 Amps
Crest factor	2.4
Overvoltage category	230 V option: 300 V CAT III
	24 V option: 300 V CAT II
Measurement surge voltage	4 kV
Power consumption	approx. 0.2 VA (Ri= $=5 \mathrm{mOhm})$
Overload for 1 sec.	$120 \mathrm{~A} \mathrm{(sinusoidal)}$
Sampling rate	$20 \mathrm{kHz} /$ phase

Voltage measurement	
The voltage measurement inputs are suitable for measurements in the following power supply systems:	
Three-phase 4-conductor systems with rated voltages up to	$\begin{aligned} & 417 \mathrm{~V} / 720 \mathrm{~V} \\ & 347 \mathrm{~V} / 600 \mathrm{~V} \text { UL listed } \\ & \hline \end{aligned}$
Three-phase 3-conductor systems with rated voltages up to	600 V
From a safety and reliability perspective, the voltage measurement inputs are designed as follows:	
Overvoltage category	600V CAT III
Measurement surge voltage	6 kV
Protection of voltage measurement	1-10 A
Metering range L-N	$0^{1)}$ to 600 Vrms
Metering range L-L	$0^{1)}$ to 1000 Vrms
Resolution	0.01 V
Crest factor	1.6 (related to 600 Vrms)
Impedance	4 MOhm / phase
Power consumption	approx. 0.1 VA
Sampling rate	$20 \mathrm{kHz} /$ phase
Transients	$>50 \mu \mathrm{~s}$
Frequency of the fundamental oscillation - Resolution	$\begin{aligned} & 40 \mathrm{~Hz} \text { to } 70 \mathrm{~Hz} \\ & 0.001 \mathrm{~Hz} \end{aligned}$

1) The device can only determine measured values, if an L-N voltage of greater than 10 Veff or an L-L voltage of greater than 18 Veff is applied to at least one voltage measurement input.

\section*{| Measurement precision phase angle | 0,075 |
| :--- | :--- |}

Terminal connection capacity (voltage and current measurement)	
Connectable conductors. Only one conductor can be connected per terminal!	
Single core, multi-core, fine-stranded	$0.2-2.5 \mathrm{~mm}^{2}$, AWG 24-12
Terminal pins, core end sheath	$0.25-2.5 \mathrm{~mm}^{2}$
Tightening torque	$0.5-0.6 \mathrm{Nm}$
Stripping length	$7 \mathrm{~mm}(0.2756 \mathrm{in})$

Residual current monitoring (RCM)	
Rated current	30 mAmps
Metering range	0 to 40 mAmps
Triggering current	$100 \mu \mathrm{~A}$
Resolution	$1 \mu \mathrm{~A}$
Crest factor	1.414 (related to 40 mA)
Burden	4 Ohm
Overload for 1 sec.	5 A
Sustained overload	1 A
Overload for 20 ms	50 A
Residual current monitoring	i.a.w. IEC/TR 60755 (2008-01), type A \approx
Maximum external burden	300 Ohm (for cable break detection)

Terminal connection capacity (residual current monitoring)	
Connectable conductors. Only one conductor can be connected per terminal!	
Rigid/flexible	$0.14-1.5 \mathrm{~mm}^{2}$, AWG 28-16
Flexible with core end sheath without plastic sleeve	$0.20-1.5 \mathrm{~mm}^{2}$
Flexible with core end sheath with plastic sleeve	$0.20-1.5 \mathrm{~mm}^{2}$
Stripping length	$7 \mathrm{~mm}(0.2756 \mathrm{in})$
Tightening torque	$0.20-0.25 \mathrm{Nm}$
Cable length	up to 30 m unshielded, from 30 m shielded

Temperature measurement input 3-wire measurement	
Update time	1 second
Connectable sensors	PT100, PT1000, KTY83, KTY84
Total burden (sensor + cable)	max. 4 kOhm
Cable length	up to 30 m (32.81 yd) unshielded, from 30 m $(32.81 \mathrm{yd})$ shielded

Sensor type	Temperature range	Resistor range	Measurement uncertainty
KTY83	$-55^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right)$ to $+175^{\circ} \mathrm{C}\left(347^{\circ} \mathrm{F}\right)$	500 Ohm to 2.6 kOhm	$\pm 1.5 \% \mathrm{rgg}$
KTY84	$-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $+300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$	350 Ohm to 2.6 kOhm	$\pm 1.5 \% \mathrm{rng}$
PT100	$-99^{\circ} \mathrm{C}\left(-146^{\circ} \mathrm{F}\right)$ to $+500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right)$	60 Ohm to 180 Ohm	$\pm 1.5 \% \mathrm{rng}$
PT1000	$-99^{\circ} \mathrm{C}\left(-146^{\circ} \mathrm{F}\right)$ to $+500^{\circ} \mathrm{C}\left(932^{\circ} \mathrm{F}\right)$	600 Ohm to 1.8 kOhm	$\pm 1.5 \% \mathrm{rng}$

Terminal connection capacity (temperature measurement input)	
Connectable conductors. Only one conductor can be connected per terminal!	
Single core, multi-core, fine-stranded	$0.08-1.5 \mathrm{~mm}^{2}$
Terminal pins, core end sheath	$1 \mathrm{~mm}^{2}$

Digital inputs 2 Digital inputs with a joint earth	
Maximum counter frequency	20 Hz
Response time (Jasic program)	200 ms
Input signal present	18 V to 28 V DC (typical 4 mA)
Input signal not present	0 to $5 \mathrm{~V} \mathrm{DC} current less than 0.5 mA$,
Cable length	up to $30 \mathrm{~m}(32.81$ yd) unshielded, from 30 m $(32.81$ yd) shielded

Digital outputs 2 digital outputs with a joint earth; opto coupler, not short-circuit proof Supply voltage	
Switching voltage	max. 60 V DC, 30 V AC
Switching current	max. 50 mAeff AC/DC
Response time (Jasic program)	200 ms
Output of voltage dips	20 ms
Output of voltage exceedance events	20 ms
Switching frequency	max. 20 Hz
Cable length	up to 30 m (32.81 yd) unshielded, from 30 m $(32.81 \mathrm{yd})$ shielded

Terminal connection capacity (digital inputs and outputs)

Rigid/flexible	$0.14-1.5 \mathrm{~mm}^{2}$, AWG 28-16
Flexible with core end sheath without plastic sleeve	$0.25-1.5 \mathrm{~mm}^{2}$
Flexible with core end sheath with plastic sleeve	$0.25-0.5 \mathrm{~mm}^{2}$
Tightening torque	$0.22-0.25 \mathrm{Nm}$
Stripping length	$7 \mathrm{~mm}(0.2756 \mathrm{in})$

RS485 interface 3-wire connection with GND, A, B	
Protocol	Modbus RTU/slave, Modbus RTU/master, Modbus RTU /gateway
Transmission rate	$9.6 \mathrm{kbps}, 19.2 \mathrm{kbps}, 38.4 \mathrm{kbps}, 57.6 \mathrm{kbps}$, Termination resistor can be activated by micro switch

Profibus interface	
Connection	SUB D 9-pin
Protocol	Profibus DP/V0 per EN 50170
Transmission rate	9.6 kBaud to 12 MBaud

Ethernet interface	RJ45
Connection	Modbus gateway, embedded web server (HTP)
Function	CP/P, EMAIL (SMTP), DHCP client (BootP), Modbus/TCP, Modbus RTU over Ethernet,
Protocols	FTP, ICMP (Ping), NTP, TFTP, BACnet
(optional), SNMP	

FUNCTION PERFORMANCE CHARACTERISTICS

Function	Symbol	Precision class	Metering range	Display range
Total active power	P	$0.2{ }^{\text {5) }}$ (IEC61557-12)	0 to 15.3 kW	0 W to 9999 GW *
Total reactive power	QA ${ }^{6)}$, Qv ${ }^{6)}$	1 (IEC61557-12)	0 to 15.3 kvar	0 varh .. 9999 Gvar *
Total apparent power	SA, Sv ${ }^{6}$	$0.2{ }^{\text {5) }}$ (IEC61557-12)	0 to 15.3 kVA	0 VA to 9999 GVA *
Total active energy	Ea	$\begin{array}{ll} \hline 0.2^{5} & (\text { IEC61557-12) } \\ \left.0.2 S^{5}\right) & \text { (IEC62053-22) } \end{array}$	0 to 15.3 kWh	0 Wh to 9999 GWh *
Total reactive energy	ErA ${ }^{6}$, ErV ${ }^{6}$	1 (IEC61557-12)	0 to 15.3 kvarh	0 varh .. 9999 Gvarh *
Total apparent energy	EapA,EapV ${ }^{6}$	0.2^{5} (IEC61557-12)	0 to 15.3 kVAh	0 VAh to 9999 GVAh *
Frequency	f	0.05 (IEC61557-12)	40 to 70 Hz	40 Hz to 70 Hz
Phase current	I	0.2 (IEC61557-12)	0.005 to 7 Amps	0 A to 9999 kA
Measured neutral conductor current	IN	0.2 (IEC61557-12)	0.005 to 7 Amps	0 A to 9999 kA
Residual currents 15, 16	IDIFF	1 (IEC61557-12)	0 to 40 mAmps	0 A to 9999 kA
Computed neutral conductor current	INc	0.5 (IEC61557-12)	0.005 to 21 A	0 A to 9999 kA
Voltage	U L-N	0.1 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Voltage	U L-L	0.1 (IEC61557-12)	18 to 1000 Vrms	0 V to 9999 kV
Power factor	PFA, PFV	0.5 (IEC61557-12)	0.00 to 1.00	0 to 1
Short-term flicker, long-term flicker	Pst, Plt	-	-	-
Voltage dips	Udip	0.2 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Voltage increases	Uswl	0.2 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Transient overvoltages	Utr	0.2 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Voltage interruptions	Uint	-	-	-
Voltage unbalance ${ }^{1)}$	Unba	0.2 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Voltage unbalance ${ }^{2)}$	Unb	0.2 (IEC61557-12)	10 to 600 Vrms	0 V to 9999 kV
Voltage harmonics	Uh	CI. 1 (IEC61000-4-7)	Up to 2.5 kHz	0 V to 9999 kV
THD of the voltage ${ }^{3)}$	THDu	1.0 (IEC61557-12)	Up to 2.5 kHz	0\% to 999 \%
THD of the voltage ${ }^{4)}$	THD-Ru	1.0 (IEC61557-12)	Up to 2.5 kHz	0\% to 999 \%
Current harmonics	Ih	CI. 1 (IEC61000-4-7)	Up to 2.5 kHz	0 A to 9999 kA
THD of the current ${ }^{3)}$	THDi	1.0 (IEC61557-12)	Up to 2.5 kHz	0\% to 999 \%
THD of the current ${ }^{4}$	THD-Ri	1.0 (IEC61557-12)	Up to 2.5 kHz	0\% to 999 \%
Mains signal voltage (interharmonics voltage)	MSV	-	-	-

1) In relation to the amplitude.
2) In relation to phase and amplitude.
3) In relation to fundamental oscillation
4) In relation to effective value.
5) Precision class 0.2/0.2S with.../ 5A converter.

Precision class $0.5 / 0.5 \mathrm{~S}$ with.../ 1A converter.
6) Calculation from fundamental oscillation.

[^0] reached, the display returns to 0 W

Janitza electronics GmbH
Vor dem Polstück 6
35633 Lahnau, Germany
Support Tel. +496441 9642-22
Fax +49 6441 9642-30
e-mail: info@janitza.com
www.janitza.com

Janitza

[^0]: * When the max. total working value s have been

